III Semester M.Sc. Degree Examination, December 2016 (Semester Scheme)
 (RNS) (2K11 Scheme) (Repeaters) MATHEMATICS
 M302 : Numerical Analysis and Matlab Programming - I

Time : 3 Hours
Max. Marks : 60
Instruction : Answer any five questions by choosing at least one from each Part.
PART - A

1. a) Derive the Newton Raphson method to solve the Non linear equation $f(x)=0$, and hence obtain the rate and condition of convergence for this method.
b) Explain Ramanujan's method to solve the non linear equation $f(x)=0$, where $f(x)$ is of the form $f(x)=1-\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots ..\right)$ and hence apply this method to find the smallest root of the equation $x e^{x}=1$.
c) In the year 1225, Leonardo of pisa studied the equation
$f(x)=x^{3}+2 x^{2}+10 x-20=0$ and produced the solution $x=1.368808107$. Nobody knows how. Solve this equation by
i) Linear method and
ii) Newton Raphson method.
2. a) Derive the Newton Raphson method to solve a system of ' n ' Nonlinear equations in ' n ' variables.
b) Solve the following system on nonlinear equations

$$
\begin{aligned}
& x_{1}^{2}+x_{2}-37=0 \\
& x_{1}+x_{2}^{2}-5=0 \\
& x_{1}+x_{2}+x_{3}-3=0
\end{aligned}
$$

by the Newton raphson method derived in part a) above.
3. a) Solve the following system using

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3}=-1 \\
& 3 x_{1}+3 x_{2}+9 x_{3}=0 \\
& 3 x_{1}+3 x_{2}+5 x_{3}=4
\end{aligned}
$$

b) Define an ($\mathrm{n} \times \mathrm{n}$) tridiagonal system of linear equations and develop the Thomas recursion algorithm.
c) Solve the following system $A X=B$, where

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
2 & 3 & -1 & 0 \\
0 & 4 & 2 & 3 \\
0 & 0 & 2 & -1
\end{array}\right], B=\left[\begin{array}{c}
5 \\
5 \\
11 \\
10
\end{array}\right], X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

by using Thomas recursion algorithm.

PART-B

4. a) Derive the Lagrange interpolation formula for the data values $\left(x_{i}, f\left(x_{i}\right), i=0,1,2 \ldots n\right)$

5
b) Let $\mathrm{P}(\mathrm{x})$ be the $\mathrm{n}^{\text {th }}$ degree Lagrange interpolating polynomial and the function $f(x) \in C^{n+1}\left[x_{0}, x_{n}\right], x_{0}<x_{1} \ldots<x_{n-1}<x_{n}$ and x_{i} are distinct then show that $f(x)=p(x)+E_{n}(x)$, where $E_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) f^{n+1}(\xi) /(n+1)!$.
c) Take $f(x)=e^{x}$ on $[0,1]$. Determine the following :
i) $\left|e^{x}-P_{1}(x)\right|$ and
ii) $\left|e^{x}-P_{2}(x)\right|$
where $P_{1}(x)$ and $P_{2}(x)$ are linear and quadratic interpolations on $[0,1]$ with $x \in\left[x_{0}, x_{1}\right]$ and $x \in\left[x_{0}, x_{2}\right], x_{i}=x_{0}+i h(i=0,1,2)$ respectively.
5. a) Derive the Hermite interpolation function $H(x)$ that interpolates the data $\left(\left(x_{i}, f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)\right), i=0,1,2, \ldots, n\right)$, when $f \in C^{2 n+2}[a, b]$ and $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$.
b) Obtain rational function approximation of the form

$$
\begin{align*}
& \frac{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}}{1+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}} \\
& \text { for }\left(\tan ^{-1} x\right) \approx x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\frac{1}{9} x^{9} \tag{4}
\end{align*}
$$

c) Fit cubic splines $\mathrm{s}_{\mathrm{i}}(\mathrm{x}), \mathrm{i}=1,2,3$ with zero second derivative end conditions and passing through the data points $(-2,4),(-1,-1),(0,2),(1,1)$ and $(2,8)$.
6. a) Let $\left(x_{i}^{(n)}, i=1,2, \ldots, n\right)$ be the roots of the $n^{\text {th }}$ degree Legendre polynomial $P_{n}(x)$ then show that $\int_{-1}^{1} P(x) d x=\sum_{i=1}^{n} C_{i}^{(n)} P\left(x_{i}^{(n)}\right), C_{i}^{(n)}=\int_{-1}^{1}\left(\prod_{j=1, j \neq i}^{n}\left(\frac{x-x_{j}^{(n)}}{x_{i}^{(n)}-x_{j}^{(n)}}\right)\right) d x$ where $P(x)$ is a polynomial of degree $\measuredangle(2 n)$.
b) Prove that $C_{i}^{(n)}=\frac{2}{\left(1-\left(x_{i}^{(n)}\right)^{2}\right)\left[P_{n}^{\prime}\left(x_{i}^{(n)}\right)\right]^{2}}$
c) Compute the values $\left(\left(C_{i}^{(n)}, x_{i}^{(n)}\right), i=1,2, \ldots, n\right)$ for $n=2,3,4,5$.

PART-C
7. a) Discus about the variables and different types of their initialization.
b) Write a matlab/scilab program to find the palindrome of the given number.
8. a) Explain the concept of decision making statements with suitable examples.
b) Discuss the concept of functions. Write a matlab/scilab program to evaluate the definite integral using Simpson's $1 / 3$ rule.

